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The research of complex differential equations regarding to zero solutions is very im-
portant, because zero function in a way symbolizes oscillation. Unlike Rolf Nevannlina’s
classical theory on evaluation of the number of zeros of the entire analytical function,
and the entire solutions of complex differential equations, this paper suggests searching
and finding of zero locations by simplified, generalized and accessible Sturm’s theo-
rems on the locations of zero solutions of oscillatory equations (but without theory
of groups).

This paper is an introductory work into the whole problem of zero locations of
complex differential equations. After the year 2000, the authors have noticed over
50 works about the evaluation of supremum of the number of zero solutions of complex
differential equations, but they are of Nevannlina-type and do not contain any essential
novelties.
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1. Introduction and preliminaries

If w = f (z) is analytical function of complex variable z, the complex differential equation
of oscillations is defined by

d2w

dz2
+ A (z)w = 0, (1)

where A (z) is also analytical coefficient.
Equation (1) is not easily solved. Starting from 1926, Rolf Nevanlinna [1] developed a

theory in which the number of zero solutions of this equation for certain A (z), or in other
words, the nature of solution oscillations u (x, y) and v (x, y) are estimated in very specific
Nevanlinna-way, using the operations such as supremum of the number of zeros.This opens
the way for development of entire functions, the bases of which have been set since Poincaré
and Piccard.

In recent time, we listed more than 50 papers dealing only with zero solutions of an
equation (1), which points to its actuality. At the same time, a group of mathematicians© ÈÂÒ ÑÎ �ÀÍ. 2010.
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with D. Dimitrovski and M. Rajović at the head, has shown through [2], a completely
elementary approach to the theory of oscillations.

The goal of our paper is to this simplified field of Sturm’s zeros transfer from real domain
to a complex domain. The novelty wouldn’t be the estimation of Nevanlinna-type, but the
zero location itself, and not only just for

w (z) = u (x, y) + iv (x, y) , (2)

but also separately only for real and imaginary parts. In this way we can also see better
the amortization of oscillations with each other. Therefore, zeros of functions (2) are also
important, separately u (x, y) = 0, v (x, y) = 0 together, as zeros w (z) .

We consequently have the extended problem of Rolf Nevannlina, with the goal of deter-
mination of the locations and counting the zeros in some narrower fields (since there are so
many of them).

2. The basic elements and Sturm’s zeros

Let’s first mention some of the examples for the theorems which will come later.
Example 1. It is easy to show that the complex differential equations of the first

order
dw

dz
+ A (z)w = 0 have no zeros w (z) = 0, because solution is exponential function

w (z) = C exp

(

−
∫

L

A (z) dz

)

, C = α + iβ, A (z) = a (x, y) + ib (x, y), L – opened curve.

We see that only solutions Rew (z) and Imw (z) can have their zeros, which are countless,
but the point is that there are no common zeros.

Example 2. Let’s take now the simplest equation (1) with complex coefficients A (z) =
(α + iβ). Here will be applicable a classic procedure of finding the particular integral where
we have the characteristic equation r2 + (α + iβ) = 0 and solutions r1/2 = ±

√

− (α + iβ).
The general solution is w (z) = c1e

r1z + c2e
r2z. Is the solution oscillatory?

Let’s take the simplest case
d2w

dz2
+ w = 0. (3)

According to above mentioned, we easily obtain r1/2 = ±i, which independent solutions
are w1 = e−y (cos x+ i sin x), w2 = ey (cos x− i sin x) . Therefore, the general solution is
w (z) = (c1e

−y + c2e
y) cosx + i (c1e

−y − c2e
y) sin x. A question arises whether at the same

time applies u (x, y) = 0 and v (x, y) = 0?
As for positive y the expressions in brackets are not equal zero, regardless the fact that

c1 and c2 can be complex it follows that at the same time should be cosx = 0 and sin x = 0.
However, that cannot be at the same time, because Sturm’s zeros of harmonic oscillations

xI = (2k − 1)
π

2
, k = 1, 2, . . . and xII = nπ, n = 0, 1, 2, . . . , are completely separeted from

each other and they are different, so they will never coincide. It implies that equation (3) has
solutions which do not have zeros, since u (x, y) = 0 and v (x, y) = 0 do not have common
zeros. Functions itself Rew1 (z), Imw1 (z) and Rew2 (z), Imw2 (z) can each have their own
zeros, and these are the oscillatory functions of two real variables.

Example 3. Let us again consider the complex differential equation (3) which cannot be
solved elementary. Using elementary arithmetical operations in the set of complex numbers,
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when in (3) we separate real and imaginary parts, we get the system of two real partial
equations

∂2u

∂x2
= −xu (x, y) + yv (x, y) ,

∂2v

∂x2
= −xv (x, y)− yu (x, y) .

This system can be transformed into Sturm’s ordinary differential equations by each ray,
y = kx, 0 ≤ k < ∞. For example, if k = 0, i. e. on Ox-axis we obtain

∂2u

∂x2
+ xu (x) = 0,

∂2v

∂x2
+ xv (x) = 0.

(4)

We can see that this is the same ordinary differential equation (connected to the Riccati
equation in theory, and it can be solved by quadratures) and it is connected to the Bessel
equation (see [3], page 40). We are going to solve the equation (4) generally, as an oscillating
equation y′′ + a (x) y = 0, for a (x) > 0 (see [2]), by our iteration sequence method. In our
case, its two linearly independent solutions for both equations in (4), for u (the same is for v)
are

u1 = 1−
∫∫

xdx2 +

∫∫

xdx2

∫∫

xdx2 −
∫∫

xdx2

∫∫

xdx2

∫∫

xdx2 + . . . ,

u2 = x−
∫∫

x2dx2 +

∫∫

xdx2

∫∫

x2dx2 −
∫∫

xdx2

∫∫

xdx2

∫∫

x2dx2 + . . .

(5)

We proved that these are oscillating functions and for them we introduced signs u1 =
cosa(x) x = cosx x, u2 = sina(x) x = sinx x.

The zeros of these oscillations are Sturm’s zeros approximately located in the solutions
of equations: for sine solution: x

√
x = nπ, n = 0, 1, 2, . . . , and for cosine solution: x

√
x =

(2k − 1)
π

2
, k = 1, 2, . . . These zeros never coincide, because they are Sturm’s, separeted,

simple zeros and they are both for u or v. It cannot be u ≡ v, because then w (z) ≡
u+ iv = (1 + i) u and this is not an analytical function so Cauchy-Riemman conditions are
not applicable. It follows that if u1 = cosx x is one solution of (5), then v1 = sinx x is the same
solution, and vice versa, but it is always u1 = v2, as well as u2 = v1. Therefore, solutions
of complex differential equation (3), on Ox-axis are: w1 (z) ≡ u1 + iv1 = cosx x + i sinx x,
w2 (z) ≡ u2+ iv2 = sinx x+ i cosx x and they have not zeros. We would act similarly on each
ray y = kx, 0 ≤ k < ∞. This is not valid for Oy-axis because k is indefinite.

Therefore, it follows
Theorem 1. The complex differential equation (3) with coefficient which is the simple

linear function of z, has solution w which has no zeros on Ox-axis.

We could similarly apply for complex equations
d2w

dz2
+ Pn (z)w = 0, where Pn (z) is

polynomial of n-th degree in respect of independent variables z and with arbitrary complex
coefficients.

We can also here formulate analogous theorems about zeros. Furthemore, if there are
zeros, we can, at the same time, provide their locations, first only for u, then only for v and
then for w (z) = u+ iv.
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Example 4. Let us consider complex differential equation

d2w

dz2
+ ezw = 0. (6)

In the same way as in the previous example, when we separate the real part from the
imaginary one, we get the system of partial equations of the second order

∂2u

∂x2
= ex (v (x, y) sin y − u (x, y) cos y) ,

∂2v

∂x2
= −ex (u (x, y) sin y + v (x, y) cos y) .

(7)

We can turn (7) into Sturm’s ordinary differential equations by each ray y = kx, 0 ≤ k < ∞,
but for the sake of shortness we will do this again for k = 0. Hence, only on Ox-axis, we
will have ordinary differential equations

d2u

dx2
+ exu (x) = 0,

d2v

dx2
+ exv (x) = 0.

Therefore, again we got the same equations for u and for v. The solutions of the equation
y′′ + exy = 0, for a (x) = ex > 0, according to [2], are

u1 = 1−
∫∫

exdx2 +

∫∫

exdx2

∫∫

exdx2 −
∫∫

exdx2

∫∫

exdx2

∫∫

exdx2 + . . . ,

u2 = x−
∫∫

xexdx2 +

∫∫

xdx2

∫∫

xexdx2 −
∫∫

xdx2

∫∫

xdx2

∫∫

xexdx2 + . . .

The same is also applies for v. These are oscillating functions, u1 = cosex x, u2 = sinex x, and
the similar u1 = v2 and u2 = v1 will apply. Sturm’s zeros will be found by using frequency
function F (x) = x

√

a (x) = x
√
ex = xex/2, and according to our theorem they are: for sine

solution in the roots of equation x
√
ex = nπ, n = 0, 1, 2, . . . , and for cosine solution in the

roots of equation x
√
ex = (2k − 1)

π

2
, k = 1, 2, . . . Also according to Sturm’s theorems the

zeros of u1 are extremes of v2, and vice versa extremes of u1 are zeros of v2.
Geometrically, zero solutions are cross sections of curve y = F (x) = x

√
ex with horizon-

tals y = nπ, n = 0, 1, 2, . . . , and y = (2k − 1)
π

2
, k = 1, 2, . . .

We can now formulate the theorem.
Theorem 2. Complex differential equation (6) has no zeros on real Ox-axis, for w = u

or w = v, but each part u = u (x, y) and v = v (x, y) has countless zeros, respectively.
However, they are not congruent, so it is always on Ox-axis, w 6= 0. Also, this doesn’t

mean that this will remain on each ray y = kx, because then the system (7) is

∂2u

∂x2
= ex (v (x, kx) sin kx− u (x, kx) cos kx) ,

∂2v

∂x2
= −ex (u (x, kx) sin kx+ v (x, kx) cos kx) .
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As the right side of these equations now is a function from k and from x, through ex, cos kx,
sin kx the analysis is more complex.

Basically, this gives the possibility of finding zero locations according to some definite
field, primarily on rays y = kx and then by arbitrary smooth curve y = g (x). In this way
we can also approach the classical theory of Rolfo Nevanlinna (see [1]), supplemented also
with zero locations, because it doesn’t give them but gives only evaluation of the supremum
of the number of zeros in the final field.
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